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Note on sources

The main source for these notes is Rapinchuk [?], with Milne as [?] as a secondary source.
Goals to cover: background for Brauer groups, central simple algebras, double centralizer
theorem, Wedderburn’s theorem. A few things from Gille and Szamuely [?] were also used.
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1 Central simple algebras

Throughout, we denote our base field by K. All K-algebras are assumed to be associative,
unital, and finite-dimensional over K. For a unital algebra A with unit 1A, we identify K
with the subalgebra

{x1A : x ∈ K}

so we can always think of K as embedded into A in this way.
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1.1 Basic definitions and examples

Definition 1.1. A K-algebra A is central if the center of A is exactly K.

Definition 1.2. A K-algebra A is simple if it has no proper two sided ideals.

Example 1.1. Let D be a division algebra over K. Then D is clearly a simple K-algebra,
since any nonzero element is a unit and generates all of D as an ideal. The center of D is
a field, though not necessarily equal to K. We can at least say that D is a central simple
algebra over Z(D).

Example 1.2. Let A be any K-algebra. We will show that Mn(A) is central. For 1 ≤ i, j ≤
n, let eij ∈ Mn(A) denote the matrix with a 1 in the ijth entry and zeros elsewhere. Note
that for X = (xij) ∈Mn(A),

eiiX =


0 · · · 0
...

...
xi1 · · · xin
...

...
0 · · · 0

 Xeii =

0 · · · x1i · · · 0
...

...
...

0 · · · xni · · · 0



with the nonzero entries appearing in the ith row and ith column, respectively. Suppose
X ∈ Mn(D) is central, so eiiX = Xeii for 1 ≤ i ≤ n. This forces all of the off-diagonal
elements of X in the ith row and ith column to be zero. Hence X is diagonal.

Then since X commutes with permutation matrices, all the diagonal elements have to be
the same. For example,0 1

1 0
Id

X =

 0 x22
x11 0

∗

 = X

0 1
1 0

Id

 =

 0 x11
x22 0

∗


Thus X = λ Id for some λ ∈ K, which shows that Mn(A) is central.

Example 1.3. Let D be a division algebra over K. By the previous example, Mn(D) is
central. We also claim that is is simple. It suffices to show that for X = (xij) ∈ Mn(D)
nonzero, the two sided ideal 〈X〉 generated by X contains eij for all i, j, since the eij give a
D-basis of Mn(D). Because of the relation

ekieijej` = ek`

if one eij lies in 〈X〉, then all of them do, so suffices to show that eij ∈ 〈X〉 for some i, j.
Choose i, j so that xij 6= 0. Then

x−1ij eiiXejj = eij

so eij ∈ 〈X〉.
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1.2 Wedderburn’s theorem

The next goal is to prove Wedderburn’s theorem, which says that all central simple algebras
arise as Mn(D) as in the previous example.

Theorem 1.1 (Wedderburn). Let A be a finite dimensional simple algebra over a field K.
Then A ∼= Mn(D) for a unique n ≥ 1 and a unique up to isomorphism division K-algebra
D. Conversely, any algebra of the form Mn(D) where D is a division algebra, is simple.

Definition 1.3. Let A be a K-algebra. For A considered as a left A-module, we write AA.

Remark 1.1. Let A be a K-algebra and M be an A-module. Then since K ↪→ A, we can
also view M as a K-module (aka K-vector space).

Lemma 1.2. Let A be a (finite dimensional, unital, associative) simple K-algebra, and let
M ⊂ A be a minimal left ideal. Then

1. There exists n > 0 so that AA ∼=
⊕n

i=1M as A-modules.

2. Any A-module is iosmorphic to a direct sum of copies of M . In particular, M is the
only simple A-module.

Proof. Proposition 1 of Rapinchuk [?].

Lemma 1.3. Let A be a K-algebra and let M be a left A-module. Then there is an isomor-
phism of K-algebras

EndA(Mn) ∼= Mn(EndA(M))

Proof. Stated and proved in somewhat more generality in Lemma 1 of Rapinchuk [?].

Lemma 1.4. Let A = Mn(D) where D is a division ring, and let V = Dn be the space
of n-columns on which A acts by left multiplication. Then V is a simple A-module and
EndA(V ) ∼= Dop.

Proof. Lemma 2 of Rapinchuk [?].

Now we finally prove Wedderburn’s theorem.

Proof. First, we claim that

EndA(AA)→ Aop φ 7→ φ(1)

is an isomorphism of K-algebras. If φ ∈ EndA(AA), then for a ∈ A,

φ(a) = aφ(1)

so φ is determined by φ(1), so the claimed map is certainly bijective. It is K-linear because
K ↪→ A and φ is A-linear. Finally, we show it is a homomorphism. We use · to denote
multiplication in Aop. Then

φ ◦ ψ 7→ φ(ψ(1)) = ψ(1)φ(1) = φ(1) · ψ(1)

3



so this establishes EndA(AA) ∼= Aop as K-algebras. By Proposition 1.2 part (1), AA ∼=
Mn as an A-module, so EndA(AA) ∼= EndA(Mn). By Lemma 1.3, we have EndA(Mn) ∼=
Mn(EndA(M)). Putting these isomorphisms together,

Aop ∼= EndA(AA) ∼= EndA(Mn) ∼= Mn(EndA(M))

For any ring R, we have an isomorphism

Mn(R)→Mn(Rop) m 7→ mT

which in the case R = EndA(M), gives

Mn(EndA(M))op ∼= Mn(EndA(M)op)

so
A ∼= (Aop)op ∼= Mn(EndA(M))op ∼= Mn(EndA(M)op)

By Schur’s lemma, EndA(M) is a division ring, so it’s opposite is also a division algebra.
Thus A ∼= Mn(D) for some division algebra D.

Now for uniqueness. Suppose A ∼= Mn1(D1) ∼= Mn2(D2). Let V1 = Dn1
1 , V2 = Dn2

2 . By
Lemma 1.4, V1, V2 are simple A-modules. Then by Proposition 1.2 part (2), V1 ∼= V2 as
A-modules. Using Lemma 1.4 again,

Dop
1
∼= EndA(V1) ∼= EndA(V2) ∼= Dop

2

hence D1
∼= D2 as K-algebras, proving uniqueness of D. Also,

dimK A = n2
1 dimK D1 = n2

2 dimK D2

implies n1 = n2 since D1
∼= D2.

1.3 Similarity of algebras

Lemma 1.5. Let K be a field. Then

1. For any K-algebra R and positive integer n, R⊗K Mn(K) ∼= Mn(R).

2. For any positive integers m,n, Mm(K)⊗K Mn(K) ∼= Mmn(K).

Proof. (1) An isomorphism is given by

R⊗K Mn(K)→Mn(R) r ⊗ x 7→ rx

with inverse given by

Mn(R) 7→ R⊗K Mn(K) (rij) 7→
∑
i,j

rij ⊗ eij

where eij is the matrix with 1 in the ijth entry and zeroes elsewhere.
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(2) Up to choice of basis, Mm(K) ∼= EndK(Km), so we work with the endomorphism
rings instead. There is a homomorphism

EndK(Km)⊗K EndK(Kn)→ EndK(Km ⊗Kn) = EndK(Kmn)

φ⊗ ψ 7→
(
x⊗ y 7→ φ(x)⊗ ψ(y)

)
Note that by Proposition 2.4, the domain is a simple algebra. Then since the map is nonzero,
it is injective (since the domain is simple). Then since the dimensions are equal, it is an
isomorphism.

Lemma 1.6 (Equivalent conditions for Brauer group equivalence). Let A1, A2 be central
simple algebras over a field K, with A1

∼= Mn1(D1), A2
∼= Mn2(D2) for unique integers n1, n2

and unique up to isomorphism division algebras D1, D2 (by Wedderburn’s theorem 1.1). The
following are equivalent.

1. D1
∼= D2

2. There exist integers m1,m2 such that A1 ⊗K Mm1(K) ∼= A2 ⊗K Mm2(K).

Proof. First we prove (1) =⇒ (2). Suppose D1
∼= D2. Then using Lemma 1.5 a few times,

A1 ⊗k Mn2(K) ∼= Mn1(D1)⊗K Mn2(K) ∼=
(
D1 ⊗K Mn1(K)

)
⊗K Mn2(K)

∼= D1 ⊗K
(
Mn1(K)⊗K Mn2(K)

)
∼= D1 ⊗K Mn1n2(K)

∼= Mn1n2(D1) ∼= Mn1n2(D2) ∼= D2 ⊗K Mn1n2(K)
∼= D2 ⊗K ⊗KMn2(K)⊗K Mn1(K) ∼= A2 ⊗K Mn1(K)

which proves (2). For the converse, suppose A1 ⊗K Mm1(K) ∼= A2 ⊗K Mm2(K). Then using
a similar chain of isomorphisms to the above,

Mm1n1(D1) ∼= A1 ⊗K Mm1(K) ∼= A2 ⊗K Mm2(K) ∼= Mm2n2(D2)

By the uniqueness of Wedderburn’s theorem 1.1, this implies D1
∼= D2.

Definition 1.4. Two central simple K-algebras are similar if either of the two preceeding
equivalent conditions holds, namely if their corresponding division algebras are isomorphic,
or if they become isomorphic after tensoring with sufficiently large matrix algebras.

This is clearly an equivalence relation because of uniqueness in Wedderburn’s theorem
and because isomorphism is an equivalence relation.

Definition 1.5. As a set, the Brauer group of a field K, denoted Br(K), is similarity
classes of central simple K-algebras.
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2 Brauer group multiplication

Definition 2.1. The group operation for Br(K) is

[A] · [B] = [A⊗K B]

Our goal for the rest of this section is to verify that this has the following properties.

1. It is well defined in the sense that the choice of representatives A,B don’t matter.

2. It is well defined in the sense that A⊗K B is central simple.

3. There is a unit.

4. Inverses exist.

5. It is associative.

6. It is commutative.

Items 5 and 6 are immediate, because ⊗K is associative and commutative. Item 3 is also
immediate, since by definition, A ∼ A ⊗K Mn(K), which is to say, [Mn(K)] is the identity.
We address item 1 first in section 2.1, then item 2 is addressed by sections 2.2 and 2.3.
Finally, item 4 is addressed in section 2.4.

2.1 Independence of representatives

Lemma 2.1. Assuming A ⊗K B is central simple, multiplication in Br(K) is independent
of the choice of representatives.

Proof. Suppose A′, B′ are other representatives with [A] = [A′], [B] = [B′]. Then there are
integers m,m′, n, n′ so that

A⊗K Mm(K) ∼= A′ ⊗K Mm′(K) B ⊗K Mn(K) ∼= B′ ⊗K Mn′(K)

Then
(A⊗K B)⊗K Mmn(K) ∼= (A′ ⊗K B′)⊗K Mm′n′(K)

hence [A⊗K B] = [A′ ⊗K B′].

2.2 A⊗K B is central if A,B are central

Lemma 2.2. Let V,W be K-vector spaces. Let w1, . . . , wn ∈ W be linearly independent. If
there exist v1, . . . , vn ∈ V such that

n∑
i=1

vi ⊗ wi = v1 ⊗ wn + · · ·+ vn ⊗ wn = 0 ∈ V ⊗K W

then v1 = · · · = vn = 0.
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Proof. Extend w1, . . . , wn to a basis w1, . . . , wn, . . . , wdimW of W . Let x1, . . . , xdimV be a
basis of V , and write vi as

vi =
∑
j

αijxj αij ∈ K

Then

0 =
∑
i

vi ⊗ wi =
∑
i

(∑
j

αijxj

)
⊗ wi =

∑
i,j

αij(xj ⊗ wi)

Since the simple tensors xj ⊗wi form a basis of V ⊗KW , by linear independence αij = 0 for
all i, j. That is, vi = 0 for all i.

Proposition 2.3 (Tensor product of central algebras is central). Let A,B be algebras over
K. Then

Z(A⊗K B) = Z(A)⊗K Z(B)

In particular, the tensor product of central algebras is central.

Proof. The inclusion ⊃ is easy, so we dispatch it first. If a⊗ b ∈ Z(A)⊗Z(B), then for any
x⊗ y ∈ A⊗B,

(x⊗ y)(a⊗ b) = xa⊗ yb = ax⊗ by = (a⊗ b)(x⊗ y)

thus a⊗ b ∈ Z(A⊗ B). The reverse inclusion is not so immediate. Let z ∈ Z(A⊗ B), and
write it as

z =
n∑
i=1

ai ⊗ bi ai ∈ A, bi ∈ B

and choose this so that n is minimal. We claim that the set {a1, . . . , an} is linearly in-
dependent over K, as is the set {b1, . . . , bn}. Suppose not, so that b1, . . . , bn are linearly
independent, so we can write b1 as a K-linear combination

b1 = β2b2 + · · ·+ βnbn βi ∈ K

Then we can write z as

z =

(
a1 ⊗

n∑
i=2

βibi

)
+

n∑
i=2

ai ⊗ bi =
n∑
i=2

(βia1 + ai)⊗ bi

contradicting the minimality of n from earlier. The same argument with roles reversed
shows the linear independence of the ai. Now we claim that ai ∈ Z(A) and bi ∈ Z(B) for
i = 1, . . . , n. For any a ∈ A, since z ∈ Z(A⊗B), we have

0 = (a⊗ 1)z − z(a⊗ 1) =
n∑
i=1

(aai − aia)⊗ bi

Then by linear indepence of the bi and Lemma 2.2, the we have aai − aia = 0 for all i, that
is, aai = aia which says that ai ∈ Z(A) for all i. By the same argument with roles reverse,
bi ∈ Z(B) for all i. Hence z ∈ Z(A)⊗ Z(B).
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2.3 A⊗K B is simple if A,B are simple and B is central

Proposition 2.4 (Tensor product of central simple algebras is simple). Let A be a central
simple K-algebra and B any K-algebra. Then any two sided ideal of A⊗K B is of the form
A⊗K b for some two sided ideal b ⊂ B. In particular, if B is simple, then A⊗KB is simple.

Proof. See Theorem 2 of Rapinchuk [?] or Proposition 2.6 of Milne [?]. Both proofs are not
very interesting, just technical. The flavor of the proof is very similar to that of Proposition
2.3.

2.4 Inverse in Br(K) given by [Aop]

Proposition 2.5 (Inverses for Brauer group). Let A be a simple K-algebra of dimension d.
Then

A⊗K Aop ∼= EndK(A) ∼= Md(K)

Note that these are isomorphisms of K-algebras.

Proof. For a ∈ A, define

La : A→ A x 7→ ax

Ra : A→ A x 7→ xa

Note that La, Ra ∈ EndK(A). Then define

L : A → EndK(A) a 7→ La

R : Aop → EndK(A) a 7→ Ra

We claim that L,R are K-algebra homomorphisms. First we verify K-linearity. Let a ∈
A, λ ∈ K.

Lλa = (x 7→ λax) = λ(x 7→ ax) = λLa

Rλa = (x 7→ xλa) = λ(x 7→ xa) = λRa

Now we verify that they preserve multiplication. Let a, b ∈ A. We denote multiplication in
Aop by a · b = ba. (Adjacent letters with no symbol denotes usual multiplication in A.)

Lab = (x 7→ abx) = (x 7→ ax) ◦ (x 7→ bx) = LaLb

Ra·b = (x 7→ x(a · b)) = (x 7→ xba) = (x 7→ xa) ◦ (x 7→ xb) = RaRb

Now we note that for a, b ∈ A, La, Rb commutes in EndK(A).

LaRb(x) = La(bx) = abx = Rb(ax) = RbLa(x)

Thus we have a K-algebra homomorphism

F : A⊗K Aop → EndK(A) a⊗ b 7→ LaRb = RbLa = (x 7→ axb)

Since A is simple, so is Aop, so by Proposition 2.4, A⊗K Aop is simple. Hence since F is not
the zero morphism, it is injective. But then by dimension counting, it is also surjective, so

A⊗K Aop ∼= EndK(A)

As a K-vector space, A is just Kd, so the final isomorphism EndK(A) ∼= Md(K) is the usual
basis-dependent isomorphism between K-linear maps Kd → Kd and d × d matrices with
entries in K.
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